论文部分内容阅读
人体图像分割作为人体行为理解和分析的基础,但要实现精准分割及实时分割是一个巨大的难题,因此提出一种深浅交错式特征融合的全卷积神经网络的方法,应用于人体图像分割。使用全卷积神经网络的卷积层提取丰富的图像特征,对不同深度的特征图由深到浅交错式地拼接并融合。最终将融合特征图送入卷积层输出预测图像,并经过全局阈值分割得到分割结果。在百度人体图像分割数据库上进行实验,其平均覆盖率可以达到89.95%,最佳分割重叠率高达99.31%;分割一幅500×500彩色图像的平均耗时为56ms,实现较好的分割性能。