论文部分内容阅读
主成分分析(PrincipalComponentAnalysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域。基于PCA,该文提出了分块PCA的人脸识别方法。分块PCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵利用PCA进行鉴别分析。其特点是能有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出。与PCA方法相比,由于使用子图像矩阵,分块PCA可以避免使用奇异值分解理论,过程简便。此外,PCA是分块PCA的特殊情况。在Yale和N