论文部分内容阅读
集中供暖系统目前在我国尤其是北方地区应用的比较广泛,但传统的集中供暖系统,煤、水、电等能源浪费严重、综合效益普遍不高。
1 集中供暖系统能量消耗的流程环节
集中供暖的基本方式为热源单位(热力公司锅炉房)通过一级热网输送管道将高温高压热水(或过热蒸汽)输送到各热力站(换热站),在热力站中经热交换器将二级热网采暖热水加热,循环泵通过二次热网管道将采暖热水送到各热用户。
1.1 集中供暖系统消耗能量的流程
目前我国集中供暖系统的热源主要来自区域锅炉房和城市热电厂。锅炉房的主要耗能设备是锅炉、燃料输送及灰渣清除机械、鼓风机和引风机、水处理设备和输配系统的水泵(循环水泵、补水泵和加压泵);它们耗用的能源是燃料、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。
传统的集中供暖系统由热源(如锅炉房)将热能送达热用户,一般都要经过供热制备、转换、输送和用热这几个环节。热能输送由热网承担,供热管道由钢管、保温层和保护层组成,其结构依敷设而异。管道敷设有架空、管沟和直埋三种方式。它们的能量消耗是沿途散热的热损失和泄漏的水、热损失。一般可用热网热效率来表示其保温效果和保热程度;热网补水率来表示热网水泄漏的程度。在热网管线上有时根据实际情况设置中间加压泵,以降低和改善系统水力工况,它的能量消耗设备是水泵,可用单位供热量的耗电量来评定耗能水平。
能量转换是通过热力站交换器(换热站)把一级热网的热能传递给二级热网,并由它输送到热用户。热力站是二级热网的热源,主要耗能设备是热交换器、二级热网系统循环水泵和补水泵。它们耗用的能源是一级热网高温水/蒸汽、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。
用热环节即终端系统用热设备。城市集中供热主要是建筑物内的采暖,本文为简化分析只谈最大热用户。一般都是通过采暖散热器把热传给房间以保持舒适的室内温度。它的耗能设备是采暖散热器。其能耗量取决于建筑围护结构的保温性能、室内温度和外界环境的温度;其耗热量可通过计量进入的循环水量和供、回水温差积分获得。通常以单位供暖面积的耗热量来评定耗能水平。
1.2 集中供暖系统的热耗、电耗及系统泄漏损失
集中供暖系统从供热设备→转换→输送→用热环节分析,能量进入和输出在理论上必须相等,即:
1)输入总能量=可利用能量+∑能量损失。2)能源利用率=可利用能量/输入总能量。集中供暖系统是由多个子系统组成。锅炉房、一级热网和热力站组成一级热网子系统,热力站(换热站)是该子系统的热用户,锅炉受热面成为能量转换设备,锅炉是热源。热力站、二级热网和终端组成二级热网子系统,热力站热交换器成为该子系统的能量转换点,一级热网水则为它的热源。广大的热用户是终端,采暖散热器则是终端用热设备。
系统电耗评估与热能评估一样可以子系统计算后叠加。系统主要耗电设备有循环水泵、补水泵、鼓风机和引风机及配套电气设备等。
系统泄漏损失导致水资源和热能两方面损失,在系统稳定情况下,水资源损失量可认为等于系统补水量。
2 集中供暖系统能耗水平悬殊的原因分析
2.1 设备效率的影响
锅炉是集中供暖系统中的最主要的能源消耗设备,锅炉热效率是衡量热源子系统热能利用率的重要指标,反映燃料有效利用的程度。目前我国燃煤锅炉的设计热效率(≥7MW)一般在70-80 %左右。但在日常使用中,锅炉热效率跟锅炉结构、燃料供应、技术水平、管理水平、人员素质等各方面均有着密切的关系。运行管理好的情况下能接近或达到设计热效率;运行管理差的情况下,锅炉燃烧不充分、排烟温度过高、各项热损失大,热效率往往达不到50%,导致能源浪费,大气环境污染增加。
风机、水泵效率是电能转化为有用功的比率,体现电能有效利用的程度,目前风机、水泵的效率一般在55-75%。它们的流(风)量和扬程(压头)的选择与配置是十分重要的。如果选择与配置合理,装机电功率匹配,运行工作点处于设备高效率区域,则电耗少;反之如果选择与配置不当(多数是偏大的情况),装机电功率偏大,运行工作点偏离设备高效率区域,则电耗多,两者的相差可达10-30%。不仅如此,锅炉的鼓、引风机配置不当,还会导致锅炉热效率下降;循环水泵如配置不当,将直接影响系统水力工况。
风机是热源子系统的主要附属设备,水泵是热网(一级和二级)子系统的主要设备。风机、水泵电耗的大小,不仅直接影响电能资源,也对运行成本有显著影响。由于集中供暖热负荷随着气候及用热规律变化的特点,设置可变频调速的风机、水泵及成熟可靠的锅炉燃烧控制系统已被实践证明可以进一步提高节能效果。
2.2 管网输送条件的影响
热力管网热效率是输送过程反映有效供热的指标,直接体现管道保温结构的效果。理论情况下一般热力管网热效率应大于90-95%。从我国现状热网实测情况看,直埋敷设管道能达到这一要求;而架空和管沟敷设管道均达不到要求,其热损失远大于10%。如果存在地沟积水、管道泡水、保温性能遭破坏等情况,其热损失甚至大于裸管,这一问题在早期建设的热力管网中广泛存在。
热力管网补水率在忽略水热胀冷缩的影响下,可近似认为是输送过程失水的指标。在管网运行正常情况下,补水率应在2%左右,但在目前实际应用中,由于管道泄漏、用户放(偷)水等原因,补水率差别很大,有时可达10%左右。系统泄漏丢失的热水,补充的是比回水温度低得多的冷水(一般是10-15℃),这就是说,系统补水不仅是水耗问题,热耗是更大的问题。补水量越大,达到要求供暖温度所消耗的热量越大,热损失越大。
2.3 运行管理水平的影响
热网水力失调是流量分配不均程度的指标。在热网达到理想平衡状态下,按用户热负荷分配流量,每个用户室温均达到一致且满足要求,则失调度为1,若分配不当,出现冷、热不均现象,说明存在水力失调现象,失调度是大于或小于1。失调度大于1的情况下,用户室温过高,导致热量浪费;失调度小于1的情况下,用户室温达不到要求,供暖质量不合格。
针对失调问题,改进和完善热网,如在终端设置自力式流量平衡阀或其它有效措施是解决问题的比较实用的做法。但在现实工作中,仍然有大量的系统工程不同程度地采用例如“大流量小温差”的方案来缓和这一问题。其实,“大流量小温差”运行并不减少供热量的热损失,而且带来循环水泵电耗的大幅度增加和热源供热量的增大(电耗与流量、扬程成正比;在管网不变条件下,电功率随流量的三次方变化)。实践证明,科学解决水力失调,使系统在设计流量下运行,能挖出8-15%的供热量。
热源(锅炉)的容量和台数是根据设计负荷、最大负荷、最小负荷和平均负荷确定的。因为锅炉热效率是随运行负荷变化的,在低负荷下运行锅炉热效率大大降低,所以在运行时根据热负荷的大小选择投入台数,保持单台锅炉在80%以上负荷能获得高效率运行,这里有10%以上的节能潜力。
按照天气变化规律,在供暖初期、末期一般供暖负荷相对较小,根据室外温度绘制运行负荷图、温度图、流量图、24小时时间图,适当减少循环水泵运行台数或根据温度变化调节燃烧负荷,能明显降低电耗、煤耗、水耗,避免在供暖初、末期发生供大于需、浪费能量的情况。
科学运行调度、按需供热,实现设备长期在高效率区间运行,供热能耗就会降低;反之,供热能耗就会升高。目前集中供暖热网系统运行一般采用质调节,有些系统采用质、量并调。国外普遍采用量调节,其原因是:①量调节的循环水泵电耗最少。从理论上说,在管道尺寸已经确定的情况下,减少流量和降低电耗是三次方关系。如流量减少30%,电功率节省65.7%。对于大部分北方地区来说,供暖长时间在70%-80%左右的流量运行,年减少电耗30%左右是不成问题的。这是一个十分可观的节能数字。②量调节对用户用热量变化的响应比质调节快得多,质调节的温度变化从热源到用户的传递是以流速进行,管道中水流速为1至2米/秒,如果水流速低,传递时间将增加。而量调节是以声速传递,其响应几乎是同步的。因此,一级热网采用量调节是比较有效的措施,同时量调节宜采用变速调节循环水泵,传统的采用阀门节流的量调节运行方式,省电效果很小。
设置热源和热网的微机监控系统,可实行最优化的运行调节和控制,实践已说明这是目前实现运行节能的新型有效技术措施。
供暖单位管理水平的不同对能耗有着显著影响,人员技术管理、系统设备检修保养等对能耗影响是不言而喻的。例如严格水处理和保持水质,维持锅炉及换热设备的传热表面清洁,就能减少传热热阻、提高设备传热效率等;供暖管道保温结构完好、无泄漏,能够大幅减少热损失。
2.4 供暖单位体制和水平的影响
在供暖由传统的福利转变为商品、供暖单位向经营企业性质转变的期间,我国目前大多数供暖单位正处于体制转轨过渡时期。为保证供暖质量和实现效益最大化驱动,部分供暖企业在上级主管部门支持下积极地进行科学技术改造、完善系统,能源利用率逐年提高,通过节能降耗提高经济效益,以高质量的供暖商品供给用户。
3 科学地制订节能目标,提高热源利用率
1)在节能降耗的各环节中可供选择的先进评估有:① 历史上最好的水平;②国内先进水平;③全国平均水平;④国际先进水平;⑤理论上能达到的最高水平。随着节能科学技术的发展,系统和设备的不断进步和完善,可供选择先进的评估指标也会不断变化。节能的潜力是通过分析对比得出的,各单位、各系统的节能潜力是不可能完全相同的。根据自身实际情况,用科学的方法、态度选择切实可行的目标。2)根据制订的目标寻找能耗差距,制订节能措施,挖掘节能潜力。每个供暖单位要定期检测评估各耗能环节的能耗指标,通过对比寻找能耗差距,分析原因,制订出经济合理的可行性方案经论证后实施。在实施后通过实际运行再检验是否达到预测的应挖掘的节能潜力和经济效益。
4 束语
在我国集中供暖系统节能潜力巨大,在以上的分析说明中有些属本文作者的观点,只能供大家参考。总之,作为工程技术人员,应深入分析研究,及时准确的分析节能潜力,确保供暖系统安全经济运行。
参考文献
[1]刘东,潘志信,贾玉贵,常见能耗分析方法简介.河北建筑工程学院学报,2005,04.
作者简介
王峻峰(1972—),工程师,热能工程专业。
1 集中供暖系统能量消耗的流程环节
集中供暖的基本方式为热源单位(热力公司锅炉房)通过一级热网输送管道将高温高压热水(或过热蒸汽)输送到各热力站(换热站),在热力站中经热交换器将二级热网采暖热水加热,循环泵通过二次热网管道将采暖热水送到各热用户。
1.1 集中供暖系统消耗能量的流程
目前我国集中供暖系统的热源主要来自区域锅炉房和城市热电厂。锅炉房的主要耗能设备是锅炉、燃料输送及灰渣清除机械、鼓风机和引风机、水处理设备和输配系统的水泵(循环水泵、补水泵和加压泵);它们耗用的能源是燃料、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。
传统的集中供暖系统由热源(如锅炉房)将热能送达热用户,一般都要经过供热制备、转换、输送和用热这几个环节。热能输送由热网承担,供热管道由钢管、保温层和保护层组成,其结构依敷设而异。管道敷设有架空、管沟和直埋三种方式。它们的能量消耗是沿途散热的热损失和泄漏的水、热损失。一般可用热网热效率来表示其保温效果和保热程度;热网补水率来表示热网水泄漏的程度。在热网管线上有时根据实际情况设置中间加压泵,以降低和改善系统水力工况,它的能量消耗设备是水泵,可用单位供热量的耗电量来评定耗能水平。
能量转换是通过热力站交换器(换热站)把一级热网的热能传递给二级热网,并由它输送到热用户。热力站是二级热网的热源,主要耗能设备是热交换器、二级热网系统循环水泵和补水泵。它们耗用的能源是一级热网高温水/蒸汽、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。
用热环节即终端系统用热设备。城市集中供热主要是建筑物内的采暖,本文为简化分析只谈最大热用户。一般都是通过采暖散热器把热传给房间以保持舒适的室内温度。它的耗能设备是采暖散热器。其能耗量取决于建筑围护结构的保温性能、室内温度和外界环境的温度;其耗热量可通过计量进入的循环水量和供、回水温差积分获得。通常以单位供暖面积的耗热量来评定耗能水平。
1.2 集中供暖系统的热耗、电耗及系统泄漏损失
集中供暖系统从供热设备→转换→输送→用热环节分析,能量进入和输出在理论上必须相等,即:
1)输入总能量=可利用能量+∑能量损失。2)能源利用率=可利用能量/输入总能量。集中供暖系统是由多个子系统组成。锅炉房、一级热网和热力站组成一级热网子系统,热力站(换热站)是该子系统的热用户,锅炉受热面成为能量转换设备,锅炉是热源。热力站、二级热网和终端组成二级热网子系统,热力站热交换器成为该子系统的能量转换点,一级热网水则为它的热源。广大的热用户是终端,采暖散热器则是终端用热设备。
系统电耗评估与热能评估一样可以子系统计算后叠加。系统主要耗电设备有循环水泵、补水泵、鼓风机和引风机及配套电气设备等。
系统泄漏损失导致水资源和热能两方面损失,在系统稳定情况下,水资源损失量可认为等于系统补水量。
2 集中供暖系统能耗水平悬殊的原因分析
2.1 设备效率的影响
锅炉是集中供暖系统中的最主要的能源消耗设备,锅炉热效率是衡量热源子系统热能利用率的重要指标,反映燃料有效利用的程度。目前我国燃煤锅炉的设计热效率(≥7MW)一般在70-80 %左右。但在日常使用中,锅炉热效率跟锅炉结构、燃料供应、技术水平、管理水平、人员素质等各方面均有着密切的关系。运行管理好的情况下能接近或达到设计热效率;运行管理差的情况下,锅炉燃烧不充分、排烟温度过高、各项热损失大,热效率往往达不到50%,导致能源浪费,大气环境污染增加。
风机、水泵效率是电能转化为有用功的比率,体现电能有效利用的程度,目前风机、水泵的效率一般在55-75%。它们的流(风)量和扬程(压头)的选择与配置是十分重要的。如果选择与配置合理,装机电功率匹配,运行工作点处于设备高效率区域,则电耗少;反之如果选择与配置不当(多数是偏大的情况),装机电功率偏大,运行工作点偏离设备高效率区域,则电耗多,两者的相差可达10-30%。不仅如此,锅炉的鼓、引风机配置不当,还会导致锅炉热效率下降;循环水泵如配置不当,将直接影响系统水力工况。
风机是热源子系统的主要附属设备,水泵是热网(一级和二级)子系统的主要设备。风机、水泵电耗的大小,不仅直接影响电能资源,也对运行成本有显著影响。由于集中供暖热负荷随着气候及用热规律变化的特点,设置可变频调速的风机、水泵及成熟可靠的锅炉燃烧控制系统已被实践证明可以进一步提高节能效果。
2.2 管网输送条件的影响
热力管网热效率是输送过程反映有效供热的指标,直接体现管道保温结构的效果。理论情况下一般热力管网热效率应大于90-95%。从我国现状热网实测情况看,直埋敷设管道能达到这一要求;而架空和管沟敷设管道均达不到要求,其热损失远大于10%。如果存在地沟积水、管道泡水、保温性能遭破坏等情况,其热损失甚至大于裸管,这一问题在早期建设的热力管网中广泛存在。
热力管网补水率在忽略水热胀冷缩的影响下,可近似认为是输送过程失水的指标。在管网运行正常情况下,补水率应在2%左右,但在目前实际应用中,由于管道泄漏、用户放(偷)水等原因,补水率差别很大,有时可达10%左右。系统泄漏丢失的热水,补充的是比回水温度低得多的冷水(一般是10-15℃),这就是说,系统补水不仅是水耗问题,热耗是更大的问题。补水量越大,达到要求供暖温度所消耗的热量越大,热损失越大。
2.3 运行管理水平的影响
热网水力失调是流量分配不均程度的指标。在热网达到理想平衡状态下,按用户热负荷分配流量,每个用户室温均达到一致且满足要求,则失调度为1,若分配不当,出现冷、热不均现象,说明存在水力失调现象,失调度是大于或小于1。失调度大于1的情况下,用户室温过高,导致热量浪费;失调度小于1的情况下,用户室温达不到要求,供暖质量不合格。
针对失调问题,改进和完善热网,如在终端设置自力式流量平衡阀或其它有效措施是解决问题的比较实用的做法。但在现实工作中,仍然有大量的系统工程不同程度地采用例如“大流量小温差”的方案来缓和这一问题。其实,“大流量小温差”运行并不减少供热量的热损失,而且带来循环水泵电耗的大幅度增加和热源供热量的增大(电耗与流量、扬程成正比;在管网不变条件下,电功率随流量的三次方变化)。实践证明,科学解决水力失调,使系统在设计流量下运行,能挖出8-15%的供热量。
热源(锅炉)的容量和台数是根据设计负荷、最大负荷、最小负荷和平均负荷确定的。因为锅炉热效率是随运行负荷变化的,在低负荷下运行锅炉热效率大大降低,所以在运行时根据热负荷的大小选择投入台数,保持单台锅炉在80%以上负荷能获得高效率运行,这里有10%以上的节能潜力。
按照天气变化规律,在供暖初期、末期一般供暖负荷相对较小,根据室外温度绘制运行负荷图、温度图、流量图、24小时时间图,适当减少循环水泵运行台数或根据温度变化调节燃烧负荷,能明显降低电耗、煤耗、水耗,避免在供暖初、末期发生供大于需、浪费能量的情况。
科学运行调度、按需供热,实现设备长期在高效率区间运行,供热能耗就会降低;反之,供热能耗就会升高。目前集中供暖热网系统运行一般采用质调节,有些系统采用质、量并调。国外普遍采用量调节,其原因是:①量调节的循环水泵电耗最少。从理论上说,在管道尺寸已经确定的情况下,减少流量和降低电耗是三次方关系。如流量减少30%,电功率节省65.7%。对于大部分北方地区来说,供暖长时间在70%-80%左右的流量运行,年减少电耗30%左右是不成问题的。这是一个十分可观的节能数字。②量调节对用户用热量变化的响应比质调节快得多,质调节的温度变化从热源到用户的传递是以流速进行,管道中水流速为1至2米/秒,如果水流速低,传递时间将增加。而量调节是以声速传递,其响应几乎是同步的。因此,一级热网采用量调节是比较有效的措施,同时量调节宜采用变速调节循环水泵,传统的采用阀门节流的量调节运行方式,省电效果很小。
设置热源和热网的微机监控系统,可实行最优化的运行调节和控制,实践已说明这是目前实现运行节能的新型有效技术措施。
供暖单位管理水平的不同对能耗有着显著影响,人员技术管理、系统设备检修保养等对能耗影响是不言而喻的。例如严格水处理和保持水质,维持锅炉及换热设备的传热表面清洁,就能减少传热热阻、提高设备传热效率等;供暖管道保温结构完好、无泄漏,能够大幅减少热损失。
2.4 供暖单位体制和水平的影响
在供暖由传统的福利转变为商品、供暖单位向经营企业性质转变的期间,我国目前大多数供暖单位正处于体制转轨过渡时期。为保证供暖质量和实现效益最大化驱动,部分供暖企业在上级主管部门支持下积极地进行科学技术改造、完善系统,能源利用率逐年提高,通过节能降耗提高经济效益,以高质量的供暖商品供给用户。
3 科学地制订节能目标,提高热源利用率
1)在节能降耗的各环节中可供选择的先进评估有:① 历史上最好的水平;②国内先进水平;③全国平均水平;④国际先进水平;⑤理论上能达到的最高水平。随着节能科学技术的发展,系统和设备的不断进步和完善,可供选择先进的评估指标也会不断变化。节能的潜力是通过分析对比得出的,各单位、各系统的节能潜力是不可能完全相同的。根据自身实际情况,用科学的方法、态度选择切实可行的目标。2)根据制订的目标寻找能耗差距,制订节能措施,挖掘节能潜力。每个供暖单位要定期检测评估各耗能环节的能耗指标,通过对比寻找能耗差距,分析原因,制订出经济合理的可行性方案经论证后实施。在实施后通过实际运行再检验是否达到预测的应挖掘的节能潜力和经济效益。
4 束语
在我国集中供暖系统节能潜力巨大,在以上的分析说明中有些属本文作者的观点,只能供大家参考。总之,作为工程技术人员,应深入分析研究,及时准确的分析节能潜力,确保供暖系统安全经济运行。
参考文献
[1]刘东,潘志信,贾玉贵,常见能耗分析方法简介.河北建筑工程学院学报,2005,04.
作者简介
王峻峰(1972—),工程师,热能工程专业。