论文部分内容阅读
从事了20多年的中学数学教学工作,我发现每一届学生都有一个共同的毛病,那就是他们解题的时候喜欢提起笔就做,没有经过仔细的思考,看一眼如果觉得不会就扔到一边,没有形成一套系统的灵活的解题方法。还有解题的格式不够标准,让人看了皱眉头,给批改的老师留下不好的印象,尤其是在考试中可能因为格式混乱而使自己的分数大打折扣,经常会有同学因此而叫屈。下面我就总结一些解题方法和解题格式供中学生朋友参考,希望对你们有所帮助。
一、中学数学中最常用的解题方法
1、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确、知识覆盖面广、评卷准确迅速、有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。①验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。②直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。③排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而得出正确的结论的解法叫排除、筛选法。④特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。⑤分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。⑥图解法:借助于符合题设条件的图形或图像的性质、特点来判断,做出正确的选择称为图解法。图解法是解选择题常用方法之一。
2、主观题解题方法
(1)换元法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
换元法是数学中一个非常重要而且应用十分广泛的解题方法,它可用于代数解题也可用于实际应用解题,大家要注意观察题目特点,灵活处理。
(2)配方法。通过配方来解决数学问题的方法叫配方法。配方就是把一个解析式经过恒等变形后,把其中的某些项配成一个或几个多项式的正整数次幂的和的形式。其中,用得最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的最值和解析式等方面都经常用到它。
(3)因式分解法。因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数法等等。
(4)待定系数法。在解数学问题时,先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
(5)构造法。在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
(6)判别式法与韦达定理。一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的情况,而且可以作为一种解题方法,它广泛应用于代数式变形,三角运算、解不等式,解方程(组),研究函数乃至几何。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,对求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
(7)反证法。反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,得出矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:①反设;②归谬;③结论。反设是反证法的基础,为了正确地作出反设,需要掌握一些常用的互为否定的表述形式,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:①与已知条件矛盾;②与已知的公理、定义、定理、公式矛盾;③与反设矛盾;④自相矛盾。
(8)几何变换法。在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相对静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:①平移;②旋转;③对称;④位似变换。
(9)面积法。平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
二、解题规范格式
解题是深化知识、发展智力、提高能力的重要手段。规范的解题能够养成良好的学习习惯,提高思维水平。解题的规范包括审题规范、语言表达规范、答案规范及解题后的反思四个方面,下面一一进行介绍。
1、审题规范
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。
(1)条件的分析:①找出题目中明确告诉的已知条件;②发现题目的隐含条件并加以揭示。目标的分析:①主要是明确要求什么或要证明什么;②把复杂的目标转化为简单的目标;③把抽象目标转化为具体的目标;④把不易把握的目标转化为可把握的目标。
(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。同学们在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。
(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。
2、语言叙述规范
语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节。因此,语言叙述必须规范。规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据。数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云。
3、答案规范
答案规范是指答案准确、简洁、全面,既注意结果的验证、取舍,又要注意答案的完整。要做到答案规范,就必须审清题目的目标,按目标作答。
4、解题后的反思
解题后的反思是指解题后对审题过程和解题方法及解题所用知识的回顾与思考,只有这样,才能有效地深化对知识的理解,提高思维能力。
(1)有时多次受阻而后“灵感”突来。不论哪种情况,思维都有很强的直觉性,若在解题后及时重现一下这个思维过程,追溯“灵感”是怎样产生的,多次受阻的原因何在,总结审题过程中的思维技巧,这对发现审题过程中的错误,提高分析问题的能力都有重要作用。
(2)学生在解题时总是用最先想到的方法,也是他们最熟悉的方法,因此,解题后反思一下有无其它解法,可使学生开拓思路,提高解题能力。
一、中学数学中最常用的解题方法
1、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确、知识覆盖面广、评卷准确迅速、有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。①验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。②直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。③排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而得出正确的结论的解法叫排除、筛选法。④特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。⑤分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。⑥图解法:借助于符合题设条件的图形或图像的性质、特点来判断,做出正确的选择称为图解法。图解法是解选择题常用方法之一。
2、主观题解题方法
(1)换元法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
换元法是数学中一个非常重要而且应用十分广泛的解题方法,它可用于代数解题也可用于实际应用解题,大家要注意观察题目特点,灵活处理。
(2)配方法。通过配方来解决数学问题的方法叫配方法。配方就是把一个解析式经过恒等变形后,把其中的某些项配成一个或几个多项式的正整数次幂的和的形式。其中,用得最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的最值和解析式等方面都经常用到它。
(3)因式分解法。因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数法等等。
(4)待定系数法。在解数学问题时,先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
(5)构造法。在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
(6)判别式法与韦达定理。一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的情况,而且可以作为一种解题方法,它广泛应用于代数式变形,三角运算、解不等式,解方程(组),研究函数乃至几何。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,对求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
(7)反证法。反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,得出矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:①反设;②归谬;③结论。反设是反证法的基础,为了正确地作出反设,需要掌握一些常用的互为否定的表述形式,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:①与已知条件矛盾;②与已知的公理、定义、定理、公式矛盾;③与反设矛盾;④自相矛盾。
(8)几何变换法。在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相对静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:①平移;②旋转;③对称;④位似变换。
(9)面积法。平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
二、解题规范格式
解题是深化知识、发展智力、提高能力的重要手段。规范的解题能够养成良好的学习习惯,提高思维水平。解题的规范包括审题规范、语言表达规范、答案规范及解题后的反思四个方面,下面一一进行介绍。
1、审题规范
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。
(1)条件的分析:①找出题目中明确告诉的已知条件;②发现题目的隐含条件并加以揭示。目标的分析:①主要是明确要求什么或要证明什么;②把复杂的目标转化为简单的目标;③把抽象目标转化为具体的目标;④把不易把握的目标转化为可把握的目标。
(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。同学们在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。
(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。
2、语言叙述规范
语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节。因此,语言叙述必须规范。规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据。数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云。
3、答案规范
答案规范是指答案准确、简洁、全面,既注意结果的验证、取舍,又要注意答案的完整。要做到答案规范,就必须审清题目的目标,按目标作答。
4、解题后的反思
解题后的反思是指解题后对审题过程和解题方法及解题所用知识的回顾与思考,只有这样,才能有效地深化对知识的理解,提高思维能力。
(1)有时多次受阻而后“灵感”突来。不论哪种情况,思维都有很强的直觉性,若在解题后及时重现一下这个思维过程,追溯“灵感”是怎样产生的,多次受阻的原因何在,总结审题过程中的思维技巧,这对发现审题过程中的错误,提高分析问题的能力都有重要作用。
(2)学生在解题时总是用最先想到的方法,也是他们最熟悉的方法,因此,解题后反思一下有无其它解法,可使学生开拓思路,提高解题能力。