论文部分内容阅读
为克服支持向量机中模型参数的随意选择对分类性能造成的不利影响,提出了基于混沌人工蜂群算法的支持向量机(CABC-SVM:Chaotic Artificial Bee Colony algorithm of Support Vector Machine)参数优化方法.该方法采用Logistic混沌映射初始化种群和锦标赛选择策略,对支持向量机的惩罚因子和核函数参数进行优化时以分类准确率作为适应度函数.通过UCI标准数据集实验证明,CABC具有较强的局部和全局搜索能力,其优化的支持向量机可在很大程度上克服局部极