论文部分内容阅读
The interfacial behavior of sulfur and yttrium in the yttrium-modified Ni3Al-based alloy IC6 during oxidation at 1100 ℃ was analyzed by X-ray line scan of electron probe microstructural analysis(EPMA). The results show that the migration and segregation of sulfur to the interface between oxide scale and the substrate at high temperature is retarded owing to the presence of yttrium. This is attributed to the desulfurization by yttrium in the melt and the trapping of sulfur by yttrium rich phases during oxidation, which leads to improving the coherence between oxide scale and substrate. Another reason of increasing the high temperature oxidation resistance of alloy IC6 by the addition of yttrium is that yttrium migrates to the grain boundaries of oxides during oxidation and hence improve their strength. This results in the transformation of the oxide scale spallation cracks from intergranular cracks for alloy without yttrium to transgranular ones for yttrium-modified alloy.