论文部分内容阅读
进化种群中出现重复个体意味着搜索区域的重叠,使得算法探索新可行区域的效率降低。另外个体重复浪费了解集中的个体名额,且造成信息冗余,使得解集的有效代表性变差。这在用NSGA—Ⅱ处理低维问题时体现得较为严重。分析了NSGA—Ⅱ中出现重复个体的原因,测试了编码方式和变量维数与重复个体数量的关系;通过实验检验了重复个体对于算法性能和解集质量的影响。实验结果表明,去除重复个体的算法能获得分布性更好的解集,且具有更强的稳定性。