论文部分内容阅读
当样本数多、数据维数高时,利用Kohonen自组织特征映射聚类后相邻类簇间容易发生大面积重叠,导致聚类和可视化的效果降低.利用Uhsch涌现自组织特征映射神经网络对测井数据进行聚类,而后分别通过分量图、U矩阵和P矩阵在超环面上进行可视化,并对其结果进行比较分析.该模型可克服Kohonen自组织特征映射的上述缺陷,优化聚类结果.借助该模型进行测井数据的聚类分析与可视化,可为岩性识别提供参考.