主成分分析结合BP神经网络对短程生物脱氮中氮的近红外光谱研究(英文)

来源 :光谱学与光谱分析 | 被引量 : 0次 | 上传用户:lwh_bbs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为实现高效短程生物脱氮及氨氮和亚硝酸盐氮的快速检测,采用主成分分析结合BP神经网络的方法建立短程生物脱氮工艺中氨氮和亚硝酸盐氮的近红外光谱定量分析模型(BP神经网络模型)。工艺运行结果表明:原水经过好氧阶段氨氮从45.3mg·L-1下降到2.7mg·L-1,亚硝酸盐氮从0.01mg·L-1上升到19.6mg·L-1,硝酸盐氮受到抑制;在缺氧段亚硝酸盐氮从19.6mg·L-1下降至1.2mg·L-1,系统实现了良好的短程生物脱氮效果。水样原始光谱主成分分析表明:前13个主成分代表了原始光谱数据的信息,其累计贡献率达到95.04%,排除了冗余信息且大大降低了模型的维数,光谱数据矩阵从192×2 203减少到192×13,大大降低了运算量并提高了模型的精度。BP神经网络模型校正结果显示:BP神经网络模型对氨氮、亚硝酸盐氮校正时的决定系数(R2)分别达到0.950 4和0.976 2,校正均方根误差(RMSECV)分别为0.016 6和0.010 9。BP神经网络模型预测结果显示:BP神经网络模型对氨氮、亚硝酸盐氮预测输出与期望输出之间的决定系数(R2)分别为0.974 0和0.981 4,预测均方根误差(RMSEP)分别为0.033 7和0.028 7,模型预测效果良好。研究表明,BP神经网络模型可以通过快速测定水样的近红外光谱数据预测短程生物脱氮工艺中氨氮和亚硝酸盐氮浓度,并根据氨氮和亚硝酸盐氮浓度变化及时、灵活地控制工艺的运行,为生物脱氮提供快速有效的检测技术和科学依据。 In order to achieve high efficiency short-range biological denitrification and rapid detection of ammonia nitrogen and nitrite nitrogen, a principal component analysis combined with BP neural network was used to establish a quantitative analysis model of near-infrared spectrum of ammonia nitrogen and nitrite nitrogen in short-range biological nitrogen removal process Neural network model). The results of process operation showed that the ammonia nitrogen concentration decreased from 45.3mg · L-1 to 2.7mg · L-1 and the nitrite nitrogen increased from 0.01mg · L-1 to 19.6mg · L-1 during the aerobic phase. Nitrate nitrogen The nitrite nitrogen decreased from 19.6mg · L-1 to 1.2mg · L-1 in the anoxic stage, and the system achieved a good effect of denitrification. The principal component analysis of the original spectrum of water samples shows that the first 13 principal components represent the original spectral data, and the cumulative contribution rate reaches 95.04%, eliminating the redundant information and greatly reducing the dimension of the model. The spectral data matrix changes from 192 × 2 203 reduced to 192 × 13, greatly reducing the amount of computation and improve the accuracy of the model. The results of BP neural network model calibration showed that the coefficients of determination (R2) of the BP neural network model for the correction of ammonia nitrogen and nitrite nitrogen reached 0.950 4 and 0.976 2 respectively, and the RMSECV of the BP neural network model were 0.016 6 and 0.010 9 . The results of BP neural network model prediction showed that the coefficients of determination (R2) of BP neural network model for prediction output and expected output of ammonia nitrogen and nitrite nitrogen were 0.974 0 and 0.981 4, respectively. The root mean square error of prediction (RMSEP) 0.033 7 and 0.028 7, the model predicted good effect. The results show that the BP neural network model can quickly determine the concentration of ammonia nitrogen and nitrite nitrogen in short-range biological nitrogen removal process by rapid determination of water near-infrared spectroscopy data and control the process flexibly according to the change of ammonia nitrogen and nitrite nitrogen concentration Operation, provide fast and effective detection technology and scientific basis for biological nitrogen removal.
其他文献
陕西商南县西南60里有大峡谷。该峡谷以早年有金丝猴出没,且峡水长流闪耀如金丝而得名。癸未年初夏,与友人同游尚在开发的金丝大峡谷。我们不嫌其陋,倒以能观峡谷之原貌而庆
文章通过对该地区的气候条件、地形地貌、土壤植被等因素的分析,论述海拉尔河洪水形成原因,并对该河流的洪灾提出一些治理措施。 By analyzing the climatic conditions, to
印度被称为宗教博物馆。其因有二:一是几乎全国人都信奉宗教;二是该国有印度教、伊斯兰教、锡克教、佛教、基督教、天主教、拜火教等几十个教派。 India is known as the R
今天是来到贵州省黔南自治州罗甸县董当乡坡共小学的第二天,一大早,我就被公鸡的叫声吵醒,因为好奇再也睡不着了,于是我就拿起一件外套,叫上黄昊一起去山上转悠。 Today is
期刊
前不久,几个朋友约我再去新疆结伴一游。我犹豫地答应了。在我心里,我喜欢到有山有水的地方,享受一下临水而居的感觉。在安排朋友之行的同时,不禁想起了去年游周庄的一些琐
目的:观察哮喘患儿的治疗效果。方法:将大理州人民医院2012年2月-2014年5月接收的60例哮喘患儿作为研究对象,随机分为对照组与观察组,每组30例,对照组行孟鲁司特治疗,观察组
采用水热法,以Bi(NO_3)_3·5H_2O和Fe(NO_3)_3·9H_2O为水热反应的铋源和铁源,在钛基板上制备Bi_(25)FeO_(40)。研究了不同反应物配比,水热反应时间、温度、矿化剂种类和浓度
以芳香醛、乙酰乙酸乙酯及脲为原料,I_2负载蒙脱土为催化剂,合成7种3,4-二氢嘧啶-2(1H)-酮衍生物。优化溶剂、催化剂、温度、反应时间及原料物质的量比得到最优条件:在无溶剂
请下载后查看,本文暂不支持在线获取查看简介。走进香格里拉!栏目主持@晓岸 Please download to view, this article does not support online access to view profile. Into
期刊