Zr4+/F– co-doped TiO2(anatase) as high performance anode material for lithium-ion battery

来源 :自然科学进展(英文版) | 被引量 : 0次 | 上传用户:qingtianleng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Zr4+ and F– co-doped TiO2 with the formula of Ti0.97Zr0.03O1.98F0.02 was facilely synthesized by a sol-gel template route. The crystal structure, morphology, composition, surface area, and conductivity were characterized by Raman spectroscopy, energy-dispersive X-ray analysis, scanning electron microscopy, Brunauer?Emmett?Teller measurements, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The results demonstrate that Zr4+ and F– homogeneously incorporated into TiO2, forming solid solution with an anatase structure. Ti0.97Zr0.03O1.98F0.02 shows outstanding electrochemical properties as Li-ion battery anode in comparison with Ti0.97Zr0.03O2. In particular, upon 35-fold cycling at 1C-rate Zr4+/F– co-doped TiO2 delivers a reversible capacity of 163 mAh g–1, whereas Zr4+-doped TiO2 gives only 34 mA h g–1. Additionally, Zr4+/F– co-doped TiO2 retains a capacity of 138 mA h g–1 during cycling even at 10 C. The enhance performance originates from improved conductivity of Zr4+/F– co-doped TiO2 material through generation of Ti3+ (serving as electron donors) into the crystal lattice and, possibly, due to F-doping blocked the anode surface from attack of HF formed as electrolyte decomposition product.
其他文献
Li2MnSiO4-based cathode materials possess reasonable work potentials and high theoretical capacities, while the practical energy/power densities are constrained
期刊
期刊
期刊
期刊
期刊
期刊
期刊
期刊
期刊