论文部分内容阅读
针对传统近红外光谱波长选择方法忽略模型中非线性因素的缺陷,采用具有非线性处理能力的最小二乘支持向量机,结合间隔策略的波长选择方法和联合区间的思想,提出了一种非线性模型下的波长筛选算法-联合区间最小二乘支持向量机(synergy interval least squares support vector machines ,siLSSVM )。以苹果糖度近红外光谱数据为例,与传统siPLS波长筛选方法相比,新算法的预测集均方根误差(RMSEP)在PLS模型和LSSVM 模型预测时分别提高了37.43%和47