【摘 要】
:
针对现有机械式人工测定方法不适应在受采动影响的巷道内测定被保护层膨胀变形量的问题,提出采用自动监测装置测定被保护层膨胀变形量。现场选用的被保护层膨胀变形量自动监测装置由基点固定器、位移传感器、通信电缆和采集主机组成,利用钻杆将位移传感器送入钻孔目标位置,采用专用基点锚固器锚固,通过位移传感器自动采集煤层变形量并将数据传输至采集主机。应用该装置在1672(1)保护层工作面回采过程中测得13-1煤被保
【机 构】
:
煤炭开采国家工程技术研究院煤矿瓦斯治理国家工程研究中心
论文部分内容阅读
针对现有机械式人工测定方法不适应在受采动影响的巷道内测定被保护层膨胀变形量的问题,提出采用自动监测装置测定被保护层膨胀变形量。现场选用的被保护层膨胀变形量自动监测装置由基点固定器、位移传感器、通信电缆和采集主机组成,利用钻杆将位移传感器送入钻孔目标位置,采用专用基点锚固器锚固,通过位移传感器自动采集煤层变形量并将数据传输至采集主机。应用该装置在1672(1)保护层工作面回采过程中测得13-1煤被保护层最大膨胀变形量为119.8 mm,膨胀变形率达到20.7‰。实践应用表明,采用自动监测装置测定被保护
其他文献
为解决沙曲二矿4303工作面沿空留巷采空区内存在高瓦斯、遗煤多、巷旁漏风量大、自然发火隐患等问题,现场基于巷旁充填体作用原理,对沿空留巷防控瓦斯与火成套技术进行了研究,开展了沿空留巷巷旁高水材料充填封闭技术应用。应用结果表明:该充填技术增阻效果明显,氧化带宽带由150 m缩短至90 m,采空区氧化带内CO浓度不超过0.005%,沿空留巷侧巷道帮逸出CH4浓度不超过1.5%,瓦斯与煤自燃复合灾害得到了有效地缓解,保证了工作面安全生产。
采空区顶板裂隙带内富集的游离瓦斯是制约工作面安全回采的重要因素之一,而当前对采空区裂隙带瓦斯富集区认识模糊,造成工作面采空区瓦斯治理不精准且低效。以新安煤矿回采工作面为背景,结合工作面顶板岩性特征、采掘情况以及低位钻场高位孔瓦斯抽采参数情况,分析了O型圈瓦斯富集区层位及水平分布,并采用近水平高位钻孔进行了试验验证。研究结果表明,回采工作面裂隙带瓦斯富集区分别位于O型外卸压圈侧和O型内卸压圈侧,且2个瓦斯富集区存在5 m左右的高差和20 m的水平差距。该结论可对采空区瓦斯进行精准治理,实现高浓度、高纯量的采
由于露天煤矿在前期开采排土过程中,没有把散煤与煤矸石分离且也未将其压实覆盖,造成排土场台阶坡面和工作平盘深部散煤自燃,部分区域燃烧数年,导致排土场边坡出现多处开裂与凹陷。通过研究排土场煤炭起火原因,分析当前采用的防火措施,探讨防火灭火新技术,以降低排土场散煤自燃风险,实现煤矿安全生产。
通过分析随行夹具输送线的主要技术特点、布局方式及工作原理等,完整介绍这一焊装车间典型输送形式。首先介绍随行夹具输送线在焊装行业的应用情况以及其优势和不足。然后介绍1种随行夹具输送线的典型布局,并简述其工作过程。之后对随行夹具输送线中的主要设备如固定辊床、升降辊床、旋转辊床和移行机等的功能、结构原理及应用特点进行说明。最后阐述随行夹具输送线规划设计过程中的技术要点。
针对岳南煤业+690 m水平南翼轨道大巷掘进段存在巷道淋水、底鼓以及两帮变形等问题,采用理论分析和现场工业性试验等方法,分析了原轨道大巷砌碹变形情况,提出了注浆加固联合强力锚杆锚索补强支护的综合加固支护方案,有效地改善了围岩的变形情况,保证了行人和材料运输的安全。
针对深井低透气性强突出煤层瓦斯预抽钻孔封孔后易漏气、抽采浓度低、抽采量小的问题,提出了“孔底一注”带压封孔新工艺,降低了预抽瓦斯穿层钻孔漏气率,提高了钻孔密封性,钻孔瓦斯抽采浓度、抽采纯量大幅提升。结合现场工程试验,对该封孔技术的应用效果进行了对比分析,分析结果表明:穿层钻孔单孔瓦斯抽采浓度达80%以上,单孔抽采纯量为0.035 m3/min,采取“孔底一注”封孔新工艺较普通的封孔工艺抽采浓度提高近4倍,抽采纯量提高近9倍,有效地改善了矿井松软低透气性煤层瓦斯抽采封孔工艺存在的问题,
为实现煤矿瓦斯风险的精准管控,在挖掘煤矿瓦斯风险影响因素的基础之上,构建了煤矿瓦斯风险评价指标体系。以熵权法对指标进行权重确定,建立了以TOPSIS模型为核心的瓦斯风险评价模型,并在南凹寺煤矿进行普适性验证。研究结果表明,南凹寺煤矿瓦斯风险等级为Ⅱ级,仍需要对瓦斯风险及隐患进行重点排查及管控,以降低瓦斯事故发生的概率。
针对七一煤业薄煤层回采巷道沿顶板破底掘进、底板较硬导致掘进缓慢、采掘接替困难等问题,采用沿底破顶掘进方式,并采用理论计算分析和现场工业性试验等综合研究方法,选取合理的锚网索联合支护形式作为永久支护。在实施该掘进工艺和支护方案后,巷道顶底板及两帮移近量明显减小,满足了矿井安全生产需要。
为了确定某矿421-2工作面运输巷区段煤柱的合理宽度,运用数值分析方法,研究了不同煤柱宽度条件下巷道在掘进和回采期间的变形及应力分布规律,确定了合理的小煤柱宽度。研究结果表明,在掘进期间承压煤柱宽度不小于7.0 m;在回采期间煤柱宽度应大于7.0 m。综合考虑不同煤柱宽度条件,并结合小煤柱理论计算结果,最终确定小煤柱宽度取8.0 m。
针对断层带附近巷道围岩破碎、受构造应力作用明显、变形量大、维护困难等特点,以S2205工作面回风巷为工程背景,采用理论分析和数值计算,分析了与正断层走向平行的回采巷道在掘进和回采期间的围岩应力演化规律。采用高强让压锚杆支护浅部围岩,实现高阻让压支护,并采用注浆加固技术,提高了巷道围岩的整体承载能力。