论文部分内容阅读
多维混合型数据监测问题一直是质量控制和质量管理中的重点和难点。混合型数据包括名义型、顺序型和数值型3种类型。传统的多变量控制图往往只考虑数值型的数据,在应用中存在一定的局限性。同时,在实际场景中,各类变量之间往往存在一定的相关性,这也是在传统控制图中容易被忽略的关键点。本文通过引入Copula-Vine模型,充分利用了顺序型变量的秩相关性,建立了一种新的基于R-Vine Copula的混合型数据控制图(R-Vine Copula control chart, RVC)。通过算例比较,验证了该控制图相对于现