【摘 要】
:
The aim of this paper is to establish the necessary and sufficient conditions for the compactness of fractional integral commutator[b,Iγ]which is generated by fractional integral Iγ and function b ∈ Lipβ (μ) on Morrey space over non-homogeneous metric mea
【机 构】
:
College of Mathematics and Statistics,Northwest Normal University,Gansu 730070,P.R.China
论文部分内容阅读
The aim of this paper is to establish the necessary and sufficient conditions for the compactness of fractional integral commutator[b,Iγ]which is generated by fractional integral Iγ and function b ∈ Lipβ (μ) on Morrey space over non-homogeneous metric measure space,which satisfies the geometrically doubling and upper doubling conditions in the sense of Hyt(o)nen.Under assumption that the dominating function λ satisfies weak reverse doubling condition,the author proves that the commutator[b,Iγ]is compact from Morrey space Mpq(μ) into Morrey space Mst (μ) if and only if b ∈ Lipβ (μ).
其他文献
本文研究了Hilbert空间上斜对角2×2分块有界算子矩阵(A)=[0BC0]的二次数值半径不等式,应用非负实数的经典凸性不等式推广了(A)的二次数值半径不等式.
设Z,N分别是全体整数和正整数的集合,Mm(Z)表示Z上m阶方阵的集合.本文运用Fermat大定理的结果证明了:对于取定的次数n∈N,n≥3,二阶矩阵方程Xn+Yn=λnI(λ∈Z,λ≠0,X,Y∈M2(Z),且X有一个特征值为有理数)只有平凡解;利用本原素因子的结果得到二阶矩阵方程Xn+Yn=(±1)nI(n∈N,n≥3,X,Y∈M2(Z))有非平凡解当且仅当n=4或gcd(n,6)=1且给出了全部非平凡解;通过构造整数矩阵的方法,证明了下面的矩阵方程有无穷多组非平凡解:(V)n∈N,Xn+ Yn=λn
设H是无限维复Hilbert空间,B(H)表示H上的有界线性算子全体构成的集合.本文对B(H)中使得f(T)满足Weyl定理的算子进行刻画,其中f是T的谱集的某个邻域上的解析函数.同时,也对算子函数的Weyl定理及算子Weyl定理的摄动之间的关系进行了讨论.
Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H.An operator A is called the truncation of B in B(H) if A =PABPA*,where PA and PA* denote projections onto the closures of R(A) and R(A*),respectively.In this paper,
In this paper,we propose a new class of non-self mappings called p-proximal α-η-β-quasi contraction,and introduce the concepts of α-proximal admissible mapping with respect to η and (α,d) regular mapping with respect to η.Based on these new notions,we stu
By combined power evolution laws of the spectral parameter and the initial constants of integration,a new differential-difference hierarchy is presented from the Toda spectral problem.The hierarchy contains the classic Toda lattice equation,the nonisospec
在自仿测度谱与非谱问题的研究中,由两元素数字集确定的迭代函数系是最简单且最重要的情形.一维情况对应Bernoulli卷积,其谱与非谱问题是已知的,而高维尤其是二维情形还未完全确定.有猜想表明:平面中遗留的情形均对应于非谱自仿测度.针对这种情况,本文首先获得了判定两元素数字集所对应平面自仿测度非谱性的一类条件,并在一种条件下得到正交指数函数系中元素个数的最佳上界.其次给出了所得结果的应用,并举例说明了该类条件的有效性.
The first purpose of this paper is to study the properties on some q-shift difference differential polynomials of meromorphic functions,some theorems about the zeros of some q-shift difference-differential polynomials with more general forms are obtained.