论文部分内容阅读
本文首次提出了长度规整的最大后验估计(MAP)方法,并将其应用到说话人分割聚类中的交叉似然比(CLR)和T-Test这两种度量距离上。传统的MAP方法需要在通用背景模型(UBM)基础上进行统计量的计算,进而对模型参数进行自适应偏移,因此偏移的程度与语音片段的长度正相关。当在度量两个长度不相同的语音片段的相似性时,传统的MAP方法会使得说话人模型刻画不准确,从而影响距离度量。本文在MAP过程中,根据语音的长度对相关因子进行规整,然后再进行模型参数的调整,从而使得模型参数与语音长度无关,更能体现说话人的身份信