论文部分内容阅读
图像分割是图像理解、模式识别、计算机视觉等研究方向的一个重要研究内容。图像分割的方法有很多,将支持向量机(Support Vector Machine,SVM)应用于图像分割已是一种较为广泛的分割方法,但该方法大多采用人工方式来选取训练样本,降低了图像分割的自适应性,且有可能影响图像分割的质量,因此基于支持向量机的图像分割方法的研究内容是如何自动选择足够多且分布良好的训练样本,并自动进行类别标注。文章提出一种基于分水岭的图像分割训练样本的自动选择和标注方法,分水岭分割区域的中心点可以看作支持向量机的