论文部分内容阅读
高光谱遥感使宽波段遥感中不可探测的物质可以被探测,成为了遥感界的一场新的革命.由于高光谱遥感图像波段多、光谱分辨率高、数据量庞大,给高光谱遥感数据实际应用分析带来极大不便.以特征选择为目的,以协方差矩阵特征值法为评价算法,设计实现了基于遗传算法和差分演化算法的降维过程.通过与传统的序列向前搜索的特征选择进行对比实验,比照搜索结果和算法耗时,验证了演化算法在特征选择的实现过程中具有良好的性能,证明了演化算法在高光谱图像降维中的实用价值.其中差分演化算法搜索结果十分稳定,可以替代完全搜索来寻找最优解.