论文部分内容阅读
针对传统的基于积分通道特征(ICF)和Adaboost交通标志检测算法,召回率过低和误检率过高的问题,提出了一种两阶段交通标志检测方法。第一阶段对ICF进行谱聚类并结合Adaboost算法学习得到目标感兴趣区域(ROI);第二阶段对所获得的感兴趣区域进行直方图均衡化,利用尺度不变特征变换(SIFT)描述子与支持向量机(SVM)分类器相结合,提高了目标区域检测的准确性。通过德国交通标志数据集(GTSDB)的验证,结果表明:采用SICF-Adaboost+SIFT-SVM构建的交通标志级联分类器检测算法