论文部分内容阅读
Ilexonin A is a compound isolated from the root of Ilex pubescens, a traditional Chinese medicine. Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia. However, the effects of ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear. Focal cerebral ischemia models were established by 2-hour occlusion of the middle cerebral artery in rats. Ilexonin A (20, 40 or 80 mg/kg) was administered im-mediately after ischemia/reperfusion. The astrocyte marker glial fibrillary acidic protein, microglia marker Iba-1, neural stem cell marker nestin and inflammation markers were detected by immunohistochemistry and western blot assay. Expression levels of tumor necrosis factor-α and interleukin 1β were determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue. Astrocytes were activated immediately in progressively increasing numbers from 1, 3, to 7 days post-ischemia/reperfusion. The number of activated astro-cytes further increased in the hippocampal CA1 region after treatment with ilexonin A. Microglial cells remained quiescent after ischemia/reperfusion, but became activated after treatment with ilexonin A. Ilexonin A enhanced nestin expression and reduced the expression of tumor necrosis factor-α and interleukin 1β in the hippocampus post-ischemia/reperfusion. The results of the present study suggest that ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion, probably through regulating astrocytes and microg-lia activation, promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors. This study was approved by the Animal Ethics Committee of the Fujian Medical University Union Hospital, China.