【摘 要】
:
针对选矿工业过程流程长、工序多、生产指标多的特点,结合数据可视化及可视分析技术,开发一种选矿生产指标可视化监控组态平台.该平台包括生产工艺可视化组态设计环境、生产
【机 构】
:
东北大学 流程工业综合自动化国家重点实验室 ,辽宁 沈阳,110819
论文部分内容阅读
针对选矿工业过程流程长、工序多、生产指标多的特点,结合数据可视化及可视分析技术,开发一种选矿生产指标可视化监控组态平台.该平台包括生产工艺可视化组态设计环境、生产指标监控和可视及可视分析3个工具.组态设计环境支持以组态方式绘制工艺流程图,并能通过可视界面自定义生产工序的输入输出指标、触发事件、约束规则、工序状态属性、提示信息等;支持集成专家知识、经验和规则以实现基于知识的生产指标监控;提供算法配置接口,方便集成指标监控算法.其组态出的每一个工序都可以复用和扩展,可以构建选矿行业的基础工序单元组件库,形成选矿行业的知识积累.基于可视的工艺流程,利用指标监控工具为指标配置可视化方案,实现指标可视化监控.可视化方案由可视及可视分析工具提供,包括实时数据、历史数据及其统计特性、多指标综合对比分析、指标关联关系分析、多视图等可视方案.此外,为了提升工序指标监控效率和减轻操作人员监控强度,系统提供因子分析、Pearson相关分析、互信息、信息熵等分析手段,以辅助人们提取出工序关键监控指标,从而实现对监控生产指标的约简.由于该平台以组态方式提供,使其可以快速应用于其他流程行业,实现生产指标可视化监控的组态化.最后,该系统作为选矿生产执行系统的一部分成功应用到某选矿厂生产过程中,取得了良好的应用效果.
其他文献
With the convergence of high-performance computing (HPC), big data and artificial intelligence (AI), the HPC community is pushing fortriple usesystems to expedi
It is hard for applications to make full utilization of the peak bandwidth of the storage system in high-performance computers because of I/O interferences, sto
Burst buffer has become a major component to meet the I/O performance requirement of HPC bursty traffic. This paper proposes Gfarm/BB that is a file system for
Storage backends of parallel compute clusters are still based mostly on magnetic disks, while newer and faster storage technologies such as flash-based SSDs or
Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data
Scientific applications at exascale generate and analyze massive amounts of data. A critical requirement of these applications is the capability to access and m
With the advancement of new information technologies, a revolution is being taken place to bring the industry into a new era of intelligent manufacturing. One o
Both resource efficiency and application QoS have been big concs of datacenter operators for a long time, but remain to be irreconcilable. High resource utiliza