论文部分内容阅读
For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-time systems with missing measurements. The missing measurements will happen at any sample time, and the probability of the occurrence of missing data is assumed to be known. The main purpose is to obtain both full-and reduced-order filters such that the filter error systems are exponentially mean-square stable and guarantee a prescribed H∞ performance in terms of linear matrix inequality (LMI). A numerical example is provided to demonstrate the validity of the proposed design approach.
For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-time systems with missing measurements. The missing measurements will happen at any sample time, and the probability of the occurrence of missing data is assumed to be known. The main purpose is to obtain both full-and reduced-order filters such that the filter error systems are exponentially mean-square stable and guarantee a prescribed H∞ performance in terms of linear matrix inequality (LMI). A numerical example is provided to demonstrate the validity of the proposed design approach.