Novel Approach to Nonlinear PID Parameter Optimization Using Ant Colony Optimization Algorithm

来源 :Journal of Bionics Engineering | 被引量 : 0次 | 上传用户:zhongjcrazytbag
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response. This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behavior of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.
其他文献
大白菜(Brassica campestris L. ssp.pekinensis)原产于中国,是我国蔬菜栽培中分布最广,种植面积最大的蔬菜作物之一。大白菜软腐病是大白菜生产中的三大主要病害之一,主要由
黄瓜是世界范围内的一种重要蔬菜。近年来,随着设施栽培面积的不断扩大,黄瓜越来越成为我国温室的主栽蔬菜作物之一。然而,由于温室的特殊环境如高温、高湿等,一些重要的病害