论文部分内容阅读
InP integrated photonics has become a critical enabler for modern telecommunications, and is poised to revolutionize data communications, precision metrology, spectrometry, and imaging. The possibility to integrate high-performance amplifiers, lasers, modulators, and detectors in combination with interferometers within one chip is enabling game-changing performance advances, energy savings, and cost reductions. Generic integration accelerates progress through the separation of applications from a common technology development. In this paper, we review the current status in In P integrated photonics and the efforts to integrate the next generation of high-performance functionality on a common substrate using the generic methodology.
InP integrated photonics has become a critical enabler for modern telecommunications, and is poised to revolutionize data communications, precision metrology, spectrometry, and imaging. The possibility to integrate high-performance amplifiers, lasers, modulators, and detectors in combination with interferometers within one chip is enabling game-changing performance advances, energy savings, and cost reductions. Generic integration accelerates progress through the separation of applications from a common technology development. In this paper, we review the current status in In P integrated photonics and the efforts to integrate the next generation of high-performance functionality on a common substrate using the generic methodology.