论文部分内容阅读
噪声监测系统能够自动测量噪声分贝值,并实时处理系统监测到的各种声音环境信息,但是在噪声监测系统的实际应用中,噪声的分贝值受到温度、湿度和大气压力等多个因素影响,与实际值存在误差.为了提高噪声的测量精度,必须使用相关技术进行校正,系统采用了线性回归和BP神经网络技术,研究了预测模型的因素和系数,分析了模型中因素的相关性,获得了噪声监测的自动校正模型.从线性回归和BP神经网络自动校正数据的测试效果看,优化了测量数据的容错性并改进了数据校正的精度,使预测模型的判定系数R~2的值有了较大提升.