论文部分内容阅读
针对陀螺仪实验数据的有限性和非平稳性,提出了基于自回归(AR)模型和隐马尔科夫模型(HMM)的陀螺漂移预测方法。首先利用AR模型参数能够敏感状态变化规律的特性,提取陀螺漂移数据的自回归系数作为特征量;然后对具有混合高斯输出的HMM进行训练;最后对陀螺仪的状态进行加权预测,改进了趋势预测的方法,解决了陀螺漂移在小样本数据条件下的预测问题。实验分析了加权模型阶数和HMM状态数对陀螺漂移预测结果的影响,并验证了预测方法的有效性。