论文部分内容阅读
针对车标识别过程中匹配阈值难、识别速度慢的问题,提出一种基于尺度不变特征变换(SIFT)的特征匹配车标识别算法.利用SIFT算子对图像的视角、平移、放射、亮度、旋转等不变特性进行提取,并采用BP神经网络算法自主选取车标图像特征进行分类、匹配和识别.仿真实验结果表明,简单车标和复杂车标的识别率平均值均达90%以上,该算法识别速度较快、识别率较高,能满足实际应用的需要.