课程资源的融合知识图谱多任务特征推荐算法

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:honeysword
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在采集在线学习信息时,普遍存在数据缺失的情况,使得课程资源推荐时可能因数据稀疏导致推荐的效果不理想.为了解决上述问题,基于端对端的深度学习框架,提出了融合知识图谱的多任务特征推荐算法(Multi-Layer Knowledge graph Recommendation,MLKR).基于多任务特征学习,在任务中嵌入知识图谱;在任务之间通过交叉压缩单元建立潜在特征和实体之间的高阶联系,从而建立推荐模型.实现了基于学习者目标、兴趣、知识水平的课程资源精准推荐.实验结果表明,MLKR推荐算法训练时长和预测准确率均优于基于用户或物品的协同过滤算法和逻辑回归模型,在课程资源推荐领域具有一定的应用价值.
其他文献
使用深度强化学习解决单智能体任务已经取得了突破性的进展.由于多智能体系统的复杂性,普通算法无法解决其主要难点.同时,由于智能体数量增加,将最大化单个智能体的累积回报的期望值作为学习目标往往无法收敛,某些特殊的收敛点也不满足策略的合理性.对于不存在最优解的实际问题,强化学习算法更是束手无策,将博弈理论引入强化学习可以很好地解决智能体的相互关系,可以解释收敛点对应策略的合理性,更重要的是可以用均衡解来替代最优解以求得相对有效的策略.因此,从博弈论的角度梳理近年来出现的强化学习算法,总结当前博弈强化学习算法的重