论文部分内容阅读
研制了一组稀土金属用钐(Sm),镨(Pr),镧(La)或(?)(Ce)混合金属的烧结的钴-稀土合金。设计的每种合金,对下列某一性能最佳。 1.磁铁显示的磁能积大于20×10~6高斯·奥斯特。 2.当反向场达14000奥斯特时磁铁表现可逆的去磁性能。 3.为了降低单位磁能的成本,磁铁使用便宜的稀土金属。这些合金将扩大钴-稀土磁铁在微波器件中的应用范围。因为钴-稀土合金显示出高的磁感应数值,同时它对退磁场具有大的抵抗力,故能在微波器件中应用。由于近来的成功,人们对制备高能磁铁的注意力大部分转到钐-钴上去了。最早用简单的压结纯钐钴合金粉末制造碰铁。这样的磁铁在稍微提高温度时被氧化,并且磁性能不稳定。为了接近完全的密度,用烧结或用等轴液压,目的是消除上述缺点。用液相烧结方法,制备稳定的高能积钐钴磁体的成功,激励我们去探研三元合金系统,在这种三元合金中钐被镨,镧,铈和混合金属代替。我们的研究显示出液相烧结方法在制造三元合金中的价值。多数例子达到了最大磁能积极限的75%~80%。当镨、镧、铈和混合金属取代了钐形成三元合金时,观察到了与二元的钐-钴合金性能的有趣差别。这样的三元合金的制备和性能在最近的文章中进行详细讨论。
A series of sintered cobalt-rare earth alloys of rare earth metals with samarium (Sm), praseodymium (Pr), lanthanum (La) or (?) (Ce) mixed metals have been developed. Each design of the alloy, the best of one of the following properties. 1. The magnet shows a product of magnetic energy greater than 20 × 10 -6 Gauss Oster. Magnets exhibit reversible demagnetization when the reverse field reaches 14,000 Oersteds. 3. In order to reduce the cost per unit of magnetic energy, magnets use cheap rare earth metals. These alloys will expand the range of applications of cobalt-rare-earth magnets in microwave devices. Because cobalt-rare-earth alloy shows high magnetic induction value, at the same time it has great resistance to demagnetizing field, it can be used in microwave devices. Due to recent successes, most attention has been paid to the production of high-energy magnets to samarium-cobalt. The earliest with a simple sintered pure samarium cobalt alloy powder touch iron. Such a magnet is oxidized with a slight increase in temperature, and its magnetic property is unstable. In order to approach full density, sintering or equiaxial hydraulic pressure, the aim is to eliminate the above shortcomings. The successful preparation of a stable high energy product samarium cobalt magnet by liquid phase sintering has motivated us to explore a ternary alloy system in which samarium is replaced by praseodymium, lanthanum, cerium and mixed metals. Our research shows the value of liquid-phase sintering in the manufacture of ternary alloys. Most examples reach the maximum limit of 75% to 80% of the maximum energy limit. When plutonium, lanthanum, cerium and mixed metals replaced samarium to form ternary alloys, interesting differences from the binary samarium-cobalt alloys were observed. The preparation and properties of such ternary alloys are discussed in detail in a recent article.