论文部分内容阅读
针对小数据集条件下的贝叶斯网络(Bayesian network,BN)参数估计困难问题,提出了一种基于变权重迁移学习(DWTL)的BN参数学习算法。首先,利用MAP和MLE方法学习得到目标域初始参数和各源域参数;然后根据不同源域数据样本贡献的不同计算源权重因子;接着基于目标域样本统计量与小数据集样本阈值的关系设计了目标域初始参数和源域参数的平衡系数;最后,基于上述参数、源权重因子和平衡系数计算得到新的目标参数。在实验研究中,通过对经典BN模型的参数学习问题验证了DWTL算法的有效性;针对小数据集下