论文部分内容阅读
The studies concerning the wake transition regime of the flow around a circular cylinder have drawn much attention in these years. Many experiments have been conducted for this problem but no accurate three-dimensional numerical simulations have hitherto been made. In this paper, a parallel procedure was developed to solve the three-dimensional Navier-Stokes equations on an SGI Origin3900 machine. Two different parallel strategies on this application were analyzed about their efficiency. It is found that the critical Reynolds number is 195, and the wake flow below this Reynolds number is purely two-dimensional one, while the Reynolds number goes beyond this critical point, the wake flow becomes unstable under three-dimensional small disturbances. The transition regime involves two modes of small-scale three-dimensional instability (modes A and B), depending on the regime of Reynolds number (Re). It is also found that the two different modes A and B exhibit different physical features of the flow. And many other important questions were addressed in this paper.
The studies concerning the wake transition regime of the flow around a circular cylinder have drawn much attention in these years. Many experiments have been conducted for this problem but not accurate three-dimensional numerical simulations have hitherto been made. In this paper, a parallel procedure was developed to solve the three-dimensional Navier-Stokes equations on an SGI Origin3900 machine. Two different parallel strategies on this application were analyzed about their efficiency. It is found that the critical Reynolds number is 195, and the wake flow below this Reynolds number is purely two-dimensional one, while the Reynolds number goes beyond this critical point, the wake flow becomes unstable under three-dimensional small disturbances. The transition regime involves two modes of small-scale three-dimensional instability (modes A and B) Depending on the regime of Reynolds number (Re). It is also found that the two different modes A and B exhibit different physical features o f the flow. And many other important questions were addressed in this paper.