平移嵌套阵列稀疏贝叶斯学习角度估计算法

来源 :电子与信息学报 | 被引量 : 3次 | 上传用户:hzfeng163
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对阵元间互耦效应导致嵌套阵列测向性能下降的问题,该文提出两种不同的平移嵌套阵列结构,在保证产生虚拟阵列无孔的条件下,通过对原二级嵌套阵列阵元位置进行调整,形成平移嵌套阵列,提高了原二级嵌套阵列的稀疏性,降低了阵元间的互耦效应,扩展了原嵌套阵列的测向自由度。在空间辐射源数目未知条件下,建立了平移嵌套阵列稀疏贝叶斯学习(SBL)算法模型,对形成的虚拟阵列接收数据进行处理,获得角度估计,有效提高了原嵌套阵列测向算法的测向性能。仿真实验表明,平移嵌套阵列自由度高于原嵌套阵列,在低信噪比、小快拍数、存在互耦
其他文献
针对2维主成分分析(2DPCA)算法无法实现在线特征提取及无法体现完整数据结构信息等问题,该文提出一种基于图像协方差无关的增量式2DPCA(I2DPCA)算法。该算法无需对图像协方差矩阵进行特征值分解奇异值分解,复杂度将大为降低,提高了特征提取速度。针对I2DPCA仅提取了横向特征的问题,又提出一种增量式行列顺序2DPCA(IRC2DPCA)算法,该算法对I2DPCA的特征矩阵再次进行纵向特征提取