论文部分内容阅读
在Spark 计算平台中,数据倾斜往往导致某些节点承受更大的网络流量和计算压力,给集群的CPU、内存、磁盘和流量带来了巨大的负担,影响整个集群的计算性能.本文通过对Spark Shuffle 设计和算法实现的研究,深入分析在大规模分布式环境下发生数据倾斜的本质原因.提出了广播机制避免Shuffle 过程数据倾斜的方法,分析了广播变量分发逻辑过程,给出广播变量性能优势分析和该方法的算法实现.通过Broadcast Join 实验验证了该方法在性能上有稳定的提升.