论文部分内容阅读
提出了一种基于径向基函数(RBF)神经网络的多通道图像数据融合复原方法,研究了该方法在多光谱图像复原上的应用.将软竞争学习策略和自适应调整隐节点相结合对网络进行优化训练.利用多光谱卫星图像数据,对所提出的方法进行仿真实验.实验结果表明该融合复原方法提高了复原图像的质量;改进后的学习算法能够保证学习准确度和较短的训练时间;实验还表明RBF神经网络的多通道复原和单通道复原、传统的维纳滤波及最大后验概率方法相比,在改善图像像质上具有明显的优越性.