论文部分内容阅读
针对蚁群算法只适用于离散优化问题的局限性和收敛速度慢的问题,提出一种适合连续优化的量子蚁群算法。该方法直接采用量子位的相位对蚂蚁编码。首先根据基于信息素强度和可见度构造的选择概率,选择蚂蚁的前进目标;然后采用量子旋转门更新描述蚂蚁位置的量子比特,完成蚂蚁移动,并采用Pauli-Z门实现蚂蚁的变异增加位置的多样性;最后根据移动后的新位置完成蚁群信息素强度和可见度的更新。由于优化过程统一在空间[0,2π]n进行,而与具体问题无关,对不同尺度空间的优化问题具有良好的适应性。以函数极值优化和控制器参数优化为