论文部分内容阅读
通过分析稀疏表示在模式识别应用的基础上,提出了一种基于稀疏表示的特征提取方法。该方法首先引入主成分分析对新的样本进行降维,然后利用降维后的训练样本构建稀疏线性模型,通过范数最优化求解测试样本的稀疏系数,根据稀疏系数的分布提取特征值。最后利用支持向量机分类器进行信号的分类识别。并在求解最小范数优化问题中,提出一种通用的解决方案,利用粒子群算法确定最优惩罚系数。新方法提取的特征值经计算机仿真研究证明,该算法具有较好的有效性和一定的工程应用性。