论文部分内容阅读
基于构造非线性方程的牛顿迭代格式简便和牛顿迭代格式具有收敛快的特点,在解决实际问题时,牛顿迭代格式显得尤为重要,但是,牛顿迭代格式的初始值选取具有很大的局限性.利用泰勒级数展开,对牛顿迭代格式的收敛性进行分析,从而提出改进牛顿迭代格式的初始值选取方案,并利用不同的数值算例验证牛顿迭代格式收敛区域的改进方案的可行性,同时数值算例表明该方法具有操作简单的特点.