论文部分内容阅读
随着人脸识别技术的不断发展,单样本人脸识别已成为当今的一个热点。针对单样本人脸识别问题,提出了一种基于虚拟样本扩展的人脸识别方法,为给定的单训练样本增加虚拟图像,以增强单训练样本的分类信息,并对原样本及其虚拟样本进行特征变换,划分得到更多的子图像,利用二维主成分分析(2DPCA)实现特征抽取,一定程度上减轻了人脸的表情、姿态、光照等因素对识别效果的影响,提高了识别率。提出的方法分别在ORL及FERET两大人脸数据库上得到了验证。