论文部分内容阅读
从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法。通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象。试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能