论文部分内容阅读
Heywang假定施主掺杂BaTiO_3陶瓷(BFT)的晶粒边界(GB)存在着二维受主型表面态,这些受主中心能从晶粒表层俘获电子,形成一定数量的表面电荷,建立表面电势垒.在耗尽层假设前提下,由解Poisson方程得表面电子势垒(?)_0=N_s~2/ε_0ε_r (1)式中:N_s为表面态密度,ε_0ε_r为材料介电常数.在居里点以上,有效介电常数按Curic-Wciss定律急剧减小,表面势垒急剧增加,电阻率(ρ(?)exp((?)_0/kT))也急剧增
Heywang assumes that there is a two-dimensional acceptor surface state in the grain boundary (GB) of the donor-doped BaTiO_3 ceramic (BFT). These acceptor centers can capture electrons from the surface of the grain to form a certain amount of surface charges and establish a surface potential barrier Under the assumption of depletion layer, the surface electron barrier () _0 = N_s ~ 2 / ε_0ε_r (1) is obtained by solving the Poisson equation, where N_s is the surface state density and ε_0ε_r is the material permittivity. The effective dielectric constant decreases sharply according to the Curic-Wciss law, the surface potential barrier increases sharply, and the resistivity (ρ (?) Exp ((?) _0 / kT)