论文部分内容阅读
The effect of post weld heat treatment on the microstructure and fracture toughness of friction welded joints of Ti-6.5Al-1Mo-1V-2Zr alloy was studied. The experimental results show that equiaxial grains were formed at the center of the weld metal while highly deformed grains were observed in the thermomechanically affected zone. The fracture toughness of the weld metal was lower than that of the thermomechanically affected zone under as-weld and post weld heat treatment conditions. With increasing temperature of post weld heat treatment, the fracture toughness of weld center and thermomechanically affected zone increased. The fractographic observation revealed that the friction welded joints fractured in a ductile mode.
The effect of post weld heat treatment on the microstructure and fracture toughness of friction welded joints of Ti-6.5Al-1Mo-1V-2Zr alloy was studied. The experimental results show that equiaxial grains were formed at the center of the weld metal while highly deformed grains were observed in the thermomechanically affected zone. The fracture toughness of the weld metal was lower than that of the thermomechanically affected zone under as-weld and post weld heat treatment conditions. With increasing temperature of post weld heat treatment, the fracture toughness of weld center and thermomechanically affected zone increased. The fractographic observation revealed that the friction welded joints fractured in a ductile mode.