论文部分内容阅读
Tetracyclines constitute one of the most important antibiotic families and represent a classic example of phototoxicity.The photoproducts of tetracyclines and their parent compounds have potentially adverse effects on natural ecosystem.In this study,the self-sensitized oxidation products of tetracycline (TC) and oxytetracycline (OTC) were determined and the effects of Ca2+ and Mg2+on self-sensitized degradation were investigated.The Ca2+ and Mg2+ in the natural water sample accounted for enhancement (pH 7.3)and inhibition (pH 9.0) of photodegradation of TC and OTC due to the formation of metal-ions complexes.The formation of Mg2+ complexes was unfavorable for the photodegradation of the tetracyclines at both pH values.In contrast,the Ca2+ complexes facilitated the attack of singlet oxygen (1O2) arising from self-sensitization at pH 7.3 and enhanced TC photodegradation.For the first time,selfsensitized oxidation products of TC and OTC were verified by quenching experiments and detected by LC/ESI-DAD-MS.The products had a nominal mass 14 Da higher than the parent drugs (designated M+14),which resulted from the 1O2 attack of the dimethylamino group on the C-4 atom of the tetracyclines.The presence of Ca2+ and Mg2+ also affected the generation of M+14 due to the formation of metal-ions complexes with TC and OTC.The findings suggest that the metal-ion complexation has significant impact on the selfsensitized oxidation processes and the photoproducts of tetracyclines.