论文部分内容阅读
在不同温度、p H和硅浓度条件下 ,实验标定了 Au- Si O2 以及 Sn- Si O2 之间的络合反应 :Au+ +H3 Si O-4 =Au H3 Si O4 lg K=- 1.6 5436 +96 11.2 1/TSn4 + +4H3 Si O-4 =Sn(H3 Si O4 ) 4 lg K2 0 0℃ =4 2 .73通过与 Au- Cl、Au- HS以及 Sn- OH络合物迁移能力的比较 ,表明在具地质意义的 p H和 Eh条件下 ,Au H3 Si O4 和 Sn(H3 Si O4 ) 4络合物可成为含硅热液中 Au、Sn的主要迁移形式。热液中硅浓度和氧逸度的降低导致溶解反应逆向进行 ,析出 Au和 Si O2 以及 Sn O2 与 Si O2 的沉淀。研究阐明了热液中 Si的络合作用对 Au、Sn等金属成矿具有普遍的重要意义。
The complexation reaction between Au-Si O2 and Sn-Si O2 was experimentally calibrated at different temperatures, p H and silicon concentrations: Au + + H3 Si O-4 = Au H3 Si O4 lg K = - 1.6 5436 + 96 11.2 1 / TSn4 + + 4H3 Si O-4 = Sn (H3 Si O4) 4 lg K2 0 0 ° C = 4 2 .73 Comparison of Migration Capacity with Au-Cl, Au-HS and Sn-OH Complexes , Indicating that Au H3 Si O 4 and Sn (H3 Si O 4) 4 complexes can be the main migration forms of Au and Sn in the silicate-bearing hydrothermal solution under geological conditions of p H and Eh. The decrease of silicon concentration and oxygen fugacity in the hydrothermal solution leads to the reversal of the dissolution reaction, the precipitation of Au and Si O2 and the precipitation of Sn O2 and Si O2. The study shows that the complexation of Si in hydrothermal fluids is of universal significance for metallogenesis of Au and Sn.