论文部分内容阅读
Recently, privacy concerns become an increasingly critical issue. Secure multi-party computation plays an important role in privacy-preserving. Secure multi-party computational geometry is a new field of secure multi-party computation. In this paper, we devote to investigating the solutions to some secure geometric problems in a cooperative environment. The problem is collaboratively computing the Euclid-distance between two private vectors without disclosing the private input to each other. A general privacy-preserving Euclid-distance protocol is firstly presented as a building block and is proved to be secure and efficient in the comparison with the previous methods. And we proposed a new protocol for the application in Wireless Sensor Networks (WSNs), based on the novel Euclid-distance protocol and Density-Based Clustering Protocol (DBCP), so that the nodes from two sides can compute cooperatively to divide them into clusters without disclosing their location information to the opposite side.
Secure, multi-party computation plays an important role in privacy-preserving. Secure multi-party computational geometry is a new field of secure multi-party computation. In this paper, we devote to investigating the solutions to some secure geometric problems in a cooperative environment. The problem is collaboratively computing the Euclid-distance between two private vectors without disclosing the private input to each other. A general privacy-preserving Euclid-distance protocol is represented as a building block and And we propose a new protocol for the application in Wireless Sensor Networks (WSNs), based on the novel Euclid-distance protocol and Density-Based Clustering Protocol (DBCP), so that the nodes from two sides can compute cooperatively to divide them into clusters without disclosing their location information to the oppo site side.