论文部分内容阅读
高斯混合模型(GMM)由于通过改变高斯的混合度,能够逼近任意概率分布,所以在语音识别领域应用广泛。对高斯混合模型的训练,常见的训练方法是最大似然估计(MLE),这种训练方法能最大程度拟合所有样本的分布,但没有考虑模型之间的相互影响,导致识别过程会出现混淆情况;区分性模型训练算法,适合应用于大数据量复杂组合类别的区分问题。这里提出采用的区分性模型训练方法,其原则是最小化分类错误风险,通过更精确细致地刻画不同模型之间的分类面,提升识别的效果。实验结果表明,该训练方法比最大似然估计的训练方法在多类别语音检出任务