论文部分内容阅读
网络信息抽取是从半结构化的Web海量数据中,按用户要求抽取且形成相关的有效的结构数据处理过程。论文以隐马尔科夫模型(HMM)进行数据抽取中的若干关键问题进行研究,提出了基于数据挖掘聚类的模型合并方法生成隐马尔可夫模型,即可根据数据自动生成HMM,同时对一般的隐马尔可夫模型进行了扩展,为每个抽取域生成一个隐马尔可夫模型,用于获取更多的有用信息。