论文部分内容阅读
研究热红外成像人脸识别技术,提出一种基于主成分分析(PCA)和线性鉴别分析(LDA)的热红外成像人脸识别方法.针对热红外人脸图像的特点,首先对图像进行预处理得到一组标准热红外人脸图像,利用PCA算法对图像向量进行降维并提取其全局特征,对降维后的热红外人脸全局特征采用LDA算法训练生成一个使类间离散度最大、类内离散度最小的最佳分类器.最后,进行基于PCA+LDA的热红外人脸图像识别研究,实验结果表明该方法可获得较高的识别率.