论文部分内容阅读
恒星光谱分类是天文学研究的一个热点问题。随着观测光谱数量的急剧增加,传统的人工分类无法满足实际需求,急需利用自动化技术,特别是数据挖掘算法来对恒星光谱进行自动分类。关联规则、神经网络、自组织网络等数据挖掘算法已广泛应用于恒星光谱分类。其中,支持向量机(SVM)分类能力突出,被广泛应用于恒星光谱分类。该方法试图在两类样本之间找到一个最优分类面将两类分开。该方法具有较高的时间复杂度,计算效率有限。双支持向量机(TWSVM)的出现有效地解决了SVM面临的效率问题。该方法通过构造两个非平行的分类面将两类分开,每一