论文部分内容阅读
基于深度卷积神经网络的目标检测算法已成为目标检测领域中的研究热点,它包括基于区域提议的两阶段目标检测算法和基于位置回归的一阶段目标检测算法。Faster R-CNN是两阶段目标检测的典型算法之一,但是,训练数据集中简单样本-难分样本数量不平衡,以及样本数据的类间不平衡,都是影响Faster R-CNN检测精度的重要原因。本文提出一种基于可变权重损失函数Focal Loss和难例挖掘模块的改进Faster R-CNN算法。具体地,在网络的分类部分引入Focal Loss函数,通过权重调节样本数据的类间