论文部分内容阅读
宏特征(即文档级特征)抽取方法是文本分类中一类典型的特征抽取方法,可以分为有监督宏特征抽取和无监督宏特征抽取。这两类宏特征抽取方法均能提高文本分类的性能。但是,同时使用两类宏特征的情况还没有被研究。该文研究了有监督宏特征和无监督宏特征融合对文本分类性能的影响。具体来讲,研究了两种有监督宏特征抽取方法,与三种无监督宏特征抽取方法,即K-means、LDA和DBN,相互融合的情况。在两个公开语料库Reuters-21578和20-Newsgroup以及一个自动构建的语料库上的对比实验表明,有监督和无监督宏特征