论文部分内容阅读
1.数控回转工作台的简介
1.1回转工作台的概述
回转工作台是数控刨台卧式铣镗床中不可缺少的重要部件之一,该部件主要用来承载被加工零件的。并完成机床在X坐标方向作直线运动,和在B坐标上作360°回转运动。其优点是:可以扩大机床的工艺范围,缩短加工中的辅助时间和提高零件的加工精度。当零件装卡于工作台面上后,除可进行一般的镗孔、钻孔、铣削外,还可使零件作轴向移动和运转分度等工序。
数控回转工作台是由床身、滑座、工作台三个基本大件组成。
1.2数控回转工作台的主要技术规格:
(1)回转工作台的台面尺寸 1600×1800mm
(2)回转工作台的总高度 1110mm
(3)回转工作台的载荷 10000Kg
(4)直线移动行程 2000mm
(5)回转工作台快速移动速度 10000mm/min
(6)回转工作台快速回转速度 4r/min
1.3数控回转工作台回转驱动的设计主要包括以下二个方面:
(1)工作台回转驱动的传动系统设计;
(2)工作台回转电机的选择;
(3)传动零件的设计与校核。
这里重点论述驱动电机的选择。
2.工作台回转驱动电机的选择与计算
2.1传动系统设计
本文所讨论的大型回转工作台的工作面积为1600×1800mm。数控回转工作台经过72:36齿形带轮,26:1蜗轮、蜗杆传动,136:17大齿圈和小齿轮的降速,使工作台快速回转速度达到1.5r/min。
2.2工作台回转电机的选择
2.2.1工作台回转的传动比计算
i=××=416
2.2.2所需回转电机额定转速
n=4×416=1664r/min
2.2.3工作台回转的传动效率的计算
η=η×η×η
式中:η----轴承的传动效率,取0.98;
η----齿轮的传动效率,取0.98;
η----蜗轮、蜗杆的传动效率,需进一步计算。
η= (《机械设计》书11-21)
式中:γ----普通圆柱蜗杆分度圆柱上的导程角;
φ----当量摩擦角,φ=arctanf,其值可根据滑动速度v由《机械设计》书上表11-18或表11-19中选取。
v== (《机械设计》书11-22)
式中:v----蜗杆分度圆的圆周速度,单位为m/s;
d----蜗杆分度圆直径,单位为mm;
n----蜗杆的转速,单位为r/min。
tanγ==== (《机械设计》书11-2)
预定蜗轮、蜗杆的模数m=8, 蜗杆直径d=80mm,蜗轮的齿数z=26,蜗杆的齿数z=1
所以γ=arctan=arctan=arctan0.1=5.71°
蜗杆传动的标准中心距为
a=(d+d)=(q+z)m (《机械设计》书11-4)
则中心距a=144mm,n=624×0.5=312r/min,v=1.31m/s
所以φ≈3°。
η===0.65
考虑到实际工作中蜗轮、蜗杆传动效率的损失取η=0.5
η=η×η×η=0.98×0.98×0.5=0.48。
2.2.4工作台回转时的摩擦力矩
已知:工作台最大载荷重量为W=10000Kg;结构尺寸见图2。
工作台重量为W=×7.8×10×V=×7.3×10×26×160×180=4100Kg
聚四氟乙烯与铸铁摩擦系数为μ=0.05(《机械设计手册》122页)
a 计算各环平均半径R
R===643mm
R中环===505.5mm
b计算各环面积S
S=π(R-R)=π[(138/2)-(119.2/2)]=3797.7cm2
S=π(R-R)=π[(108.8/2)-(93.4/2)]=2445.6cm2
c计算各环导轨正压力P
均布载荷系数q=( W+W)/S=(10000+4100)/(3797.7+2445.6)=2.26Kg/ cm2
P=Sq=3797.7×2.26=8582.8 Kg
P=Sq=2445.6×2.26=5527Kg
d计算各环导轨摩擦力矩M
M=0.05×P×R=0.05×8582.8×643×10=275.9Kgm
M=0.05×P×R=0.05×5527×505.5×10=139.7Kgm
e 计算工作台总摩擦力矩M总
M= M+M=275.9+139.7=415.6Kgm=0.4156Kg.cm.s2
2.4.5折算到马达轴上的总惯量的计算
齿轮传动时,传动系统折算到马达轴上的惯量:
圆柱体转动惯量公式:J=
对于钢材:J=×10=0.78×D×L×10(kgf•cm•s)
式中:M----圆柱体质量,单位为kg;
D----圆柱体体积,单位为cm;
L----圆柱体长度或厚度,单位为cm;
ρ----材料比重,单位为gf/cm3。
齿轮齿条传动时工作台折算到小齿轮轴上的转动惯量公式:
J=R(kgf•cm•s)
式中:R----齿轮分度圆半径,单位为cm;
W----工件及工作台重量,单位为kgf。
齿轮齿条传动时传动系统折算到马达轴上的总转动惯量公式:
J=J+J+R(kgf•cm•s)
式中:J,J----分别为Ⅰ轴、Ⅱ轴上齿轮的转动惯量,单位为(kgf•cm•s);
R----齿轮z分度圆半径,单位为cm;
W----工件及工作台重量,单位为kgf。
所以J=0.78×9.03×11.7×10=0.06(kgf•cm•s)
J=0.78×18×8×10=0.66(kgf•cm•s)
J=0.78×8×9×10=0.029(kgf•cm•s)
J=0.78×22.4×8.5×10=1.67(kgf•cm•s)
J=0.78×8.5×7.7×10=0.03(kgf•cm•s)
J=J+J+2J+2(J+J)+=0.06+0.66+2×0.029+2×(1.67+0.03)+×=0.242kgf•cm•s
根据J=0.242kgf•cm•s,选SIEMENS-IFT6105-IAC71交流伺服系统
此电机额定转速n=2000r/min
电机输出功率为P=8.7KW
电机额定转矩为M=3.8kg•m
转子转动惯量为J=168×10kg•m2=0.171kgf•cm•s
通常交流电机转动惯量比J/J≤3倍,此电机J/J=0.242/0.171=1.415(倍),所以选用此电机惯量匹配合理。
2.2.6工作台回转电机的校核
根据机床设计手册第三册的513页,对于数控机床而言,因为动态性能要求较高,所以马达力矩主要是用于产生加速度的。所以通常可先按式(6.6-63)选择马达,要使快速空载启动力矩小于马达的最大转矩,即M≤M
空载启动力矩M:M=M+ M
马达输出转矩的最大值,即峰值转矩M:M=λM
式中:M----折算到马达轴上的摩擦力矩,单位为kgf•m;
M----马达额定转矩;
λ----马达转矩的瞬时过载系数:交流伺服电机λ=1.5~2。
所以取λ=2
J为折算到马达轴上的总惯量:
J=J+J=0.242+0.171=0.413 kgf•cm•s
加速度力矩M:
M=×10kg•m
式中:J----折算到马达轴上总惯量,单位为kgf•cm•s;
T----系统时间常数,单位为s;
n----马达转速,单位为r/min;
n=n,计算M。
所以M=J×n×10/9.6T(T=0.2秒)=0.413×2000×10/9.6×0.2=4.3kgf•m
折算到马达轴上的摩擦力矩:
M= M/iη==2.1 Kg•m即21Nm
所以空载启动力矩M=M+ M=4.3+2.1=6.4 kgf•m
馬达的最大转矩M=λM=2×3.8=7.6 kgf•m
由于空载启动力矩M<马达的最大转矩Mmax,所以该伺服电机符合要求。
3.回转台回转系统驱动电机的设计结论
通过上述的设计与计算,可见工作台回转电机的选择是合适的。
【参考文献】
[1]机械设计.高等学校出版社.2001.
[2]机械设计手册.第三卷.机械工业出版社.1991.
[3]机械设计手册.第三册.机械工业出版社.1986.
1.1回转工作台的概述
回转工作台是数控刨台卧式铣镗床中不可缺少的重要部件之一,该部件主要用来承载被加工零件的。并完成机床在X坐标方向作直线运动,和在B坐标上作360°回转运动。其优点是:可以扩大机床的工艺范围,缩短加工中的辅助时间和提高零件的加工精度。当零件装卡于工作台面上后,除可进行一般的镗孔、钻孔、铣削外,还可使零件作轴向移动和运转分度等工序。
数控回转工作台是由床身、滑座、工作台三个基本大件组成。
1.2数控回转工作台的主要技术规格:
(1)回转工作台的台面尺寸 1600×1800mm
(2)回转工作台的总高度 1110mm
(3)回转工作台的载荷 10000Kg
(4)直线移动行程 2000mm
(5)回转工作台快速移动速度 10000mm/min
(6)回转工作台快速回转速度 4r/min
1.3数控回转工作台回转驱动的设计主要包括以下二个方面:
(1)工作台回转驱动的传动系统设计;
(2)工作台回转电机的选择;
(3)传动零件的设计与校核。
这里重点论述驱动电机的选择。
2.工作台回转驱动电机的选择与计算
2.1传动系统设计
本文所讨论的大型回转工作台的工作面积为1600×1800mm。数控回转工作台经过72:36齿形带轮,26:1蜗轮、蜗杆传动,136:17大齿圈和小齿轮的降速,使工作台快速回转速度达到1.5r/min。
2.2工作台回转电机的选择
2.2.1工作台回转的传动比计算
i=××=416
2.2.2所需回转电机额定转速
n=4×416=1664r/min
2.2.3工作台回转的传动效率的计算
η=η×η×η
式中:η----轴承的传动效率,取0.98;
η----齿轮的传动效率,取0.98;
η----蜗轮、蜗杆的传动效率,需进一步计算。
η= (《机械设计》书11-21)
式中:γ----普通圆柱蜗杆分度圆柱上的导程角;
φ----当量摩擦角,φ=arctanf,其值可根据滑动速度v由《机械设计》书上表11-18或表11-19中选取。
v== (《机械设计》书11-22)
式中:v----蜗杆分度圆的圆周速度,单位为m/s;
d----蜗杆分度圆直径,单位为mm;
n----蜗杆的转速,单位为r/min。
tanγ==== (《机械设计》书11-2)
预定蜗轮、蜗杆的模数m=8, 蜗杆直径d=80mm,蜗轮的齿数z=26,蜗杆的齿数z=1
所以γ=arctan=arctan=arctan0.1=5.71°
蜗杆传动的标准中心距为
a=(d+d)=(q+z)m (《机械设计》书11-4)
则中心距a=144mm,n=624×0.5=312r/min,v=1.31m/s
所以φ≈3°。
η===0.65
考虑到实际工作中蜗轮、蜗杆传动效率的损失取η=0.5
η=η×η×η=0.98×0.98×0.5=0.48。
2.2.4工作台回转时的摩擦力矩
已知:工作台最大载荷重量为W=10000Kg;结构尺寸见图2。
工作台重量为W=×7.8×10×V=×7.3×10×26×160×180=4100Kg
聚四氟乙烯与铸铁摩擦系数为μ=0.05(《机械设计手册》122页)
a 计算各环平均半径R
R===643mm
R中环===505.5mm
b计算各环面积S
S=π(R-R)=π[(138/2)-(119.2/2)]=3797.7cm2
S=π(R-R)=π[(108.8/2)-(93.4/2)]=2445.6cm2
c计算各环导轨正压力P
均布载荷系数q=( W+W)/S=(10000+4100)/(3797.7+2445.6)=2.26Kg/ cm2
P=Sq=3797.7×2.26=8582.8 Kg
P=Sq=2445.6×2.26=5527Kg
d计算各环导轨摩擦力矩M
M=0.05×P×R=0.05×8582.8×643×10=275.9Kgm
M=0.05×P×R=0.05×5527×505.5×10=139.7Kgm
e 计算工作台总摩擦力矩M总
M= M+M=275.9+139.7=415.6Kgm=0.4156Kg.cm.s2
2.4.5折算到马达轴上的总惯量的计算
齿轮传动时,传动系统折算到马达轴上的惯量:
圆柱体转动惯量公式:J=
对于钢材:J=×10=0.78×D×L×10(kgf•cm•s)
式中:M----圆柱体质量,单位为kg;
D----圆柱体体积,单位为cm;
L----圆柱体长度或厚度,单位为cm;
ρ----材料比重,单位为gf/cm3。
齿轮齿条传动时工作台折算到小齿轮轴上的转动惯量公式:
J=R(kgf•cm•s)
式中:R----齿轮分度圆半径,单位为cm;
W----工件及工作台重量,单位为kgf。
齿轮齿条传动时传动系统折算到马达轴上的总转动惯量公式:
J=J+J+R(kgf•cm•s)
式中:J,J----分别为Ⅰ轴、Ⅱ轴上齿轮的转动惯量,单位为(kgf•cm•s);
R----齿轮z分度圆半径,单位为cm;
W----工件及工作台重量,单位为kgf。
所以J=0.78×9.03×11.7×10=0.06(kgf•cm•s)
J=0.78×18×8×10=0.66(kgf•cm•s)
J=0.78×8×9×10=0.029(kgf•cm•s)
J=0.78×22.4×8.5×10=1.67(kgf•cm•s)
J=0.78×8.5×7.7×10=0.03(kgf•cm•s)
J=J+J+2J+2(J+J)+=0.06+0.66+2×0.029+2×(1.67+0.03)+×=0.242kgf•cm•s
根据J=0.242kgf•cm•s,选SIEMENS-IFT6105-IAC71交流伺服系统
此电机额定转速n=2000r/min
电机输出功率为P=8.7KW
电机额定转矩为M=3.8kg•m
转子转动惯量为J=168×10kg•m2=0.171kgf•cm•s
通常交流电机转动惯量比J/J≤3倍,此电机J/J=0.242/0.171=1.415(倍),所以选用此电机惯量匹配合理。
2.2.6工作台回转电机的校核
根据机床设计手册第三册的513页,对于数控机床而言,因为动态性能要求较高,所以马达力矩主要是用于产生加速度的。所以通常可先按式(6.6-63)选择马达,要使快速空载启动力矩小于马达的最大转矩,即M≤M
空载启动力矩M:M=M+ M
马达输出转矩的最大值,即峰值转矩M:M=λM
式中:M----折算到马达轴上的摩擦力矩,单位为kgf•m;
M----马达额定转矩;
λ----马达转矩的瞬时过载系数:交流伺服电机λ=1.5~2。
所以取λ=2
J为折算到马达轴上的总惯量:
J=J+J=0.242+0.171=0.413 kgf•cm•s
加速度力矩M:
M=×10kg•m
式中:J----折算到马达轴上总惯量,单位为kgf•cm•s;
T----系统时间常数,单位为s;
n----马达转速,单位为r/min;
n=n,计算M。
所以M=J×n×10/9.6T(T=0.2秒)=0.413×2000×10/9.6×0.2=4.3kgf•m
折算到马达轴上的摩擦力矩:
M= M/iη==2.1 Kg•m即21Nm
所以空载启动力矩M=M+ M=4.3+2.1=6.4 kgf•m
馬达的最大转矩M=λM=2×3.8=7.6 kgf•m
由于空载启动力矩M<马达的最大转矩Mmax,所以该伺服电机符合要求。
3.回转台回转系统驱动电机的设计结论
通过上述的设计与计算,可见工作台回转电机的选择是合适的。
【参考文献】
[1]机械设计.高等学校出版社.2001.
[2]机械设计手册.第三卷.机械工业出版社.1991.
[3]机械设计手册.第三册.机械工业出版社.1986.